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De-noising of Raman spectrum signal based on
stationary wavelet transform

Qingwei Gao (%i&4#)', Zhaoqi Sun (F3+%)?, Zhuoliang Cao (¥ £ R)?, and Pu Cheng (£ #)’

! Department of Automation; ?Department of Physics, Anhui University, Hefei 230039

Received November 17, 2003

In this paper, the Raman spectrum signal de-noising based on stationary wavelet transform is discussed.
Haar wavelet is selected to decompose the Raman spectrum signal for several levels based on stationary
wavelet transform. The noise mean square ¢; is estimated by the wavelet details at every level, and the
wavelet details toward 0 by a threshold ¢;v/2Inn, where n is length of the detail, then recovery signal
is reconstructed. Experimental results show this method not only suppresses noise effectively, but also
preserves as many target characteristics of original signal as possible. This de-noising method offers a very
attractive alternative to Raman spectrum signal noise suppress.

OCIS codes: 300.6450, 100.7410, 070.6020.

Raman spectroscopy is increasingly becoming the pre-
ferred tool for material characterization and analysis. It
does not, only provide a chemical fingerprint of the sur-
face molecules, but also supply additional information
concerning the measurement of stress, orientation, mid-
range order in solids and the identification of surface
composition. A major problem with application of Ra-
man spectroscopy is that Raman spectroscopy signal is
weak and often overlapped by noise.

Recently, the wavelet transform has received consider-
able attention from researchers in many areas such as
signal processing, image processing, pattern recognition,
communication, etc.. The primary attractive feature
of wavelet transform is its capacity for multiresolution
analysis'"?). An important application of wavelets is de-
noising. A powerful approach for noise reduction based
on wavelet transform has been proposed by Donoho and
Johnstonel®4], Tt employs thresholding in wavelet do-
main and has been shown to be asymptotically near op-
timal for a wide class of signals corrupted by additive
white Gaussian noise. It has been successfully applied
to the applications such as ECG signall® and synthetic
aperture radar imaging process(®l.

To wavelet multiresolution analysis, Mallat gave the
fast discrete wavelet pyramid algorithm™. If f; is dis-
crete sample signal, let ¢; ; = fi (in practice, let co.x = fi
be the initial signal sequence), the Mallat algorithm of
signal multiresolution analysis is

Cj+1,m = Zﬁ(k bt 2m)cj’k
k 1
djv1,m =) g(k —2m)cjr ’ (1)
k

where c; 5, represents approximation coefficient of signal,
d; i is detail coefficient of signal. Equation (1) can also
be written as

Cjt+1 = DEHCJ' (2)
dj+1 = DEGCJ' )

The corresponding reconstruction algorithm is

Cik = Z h(k —2m)cjt1,m + Zg(k —2m)dj+1,m, (3)
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that is
Cj = Re(cj+17dj+1) = ZEH*Cj-i-l + ZEG*dj+1, (4)

where H* and G* are conjugate filters of H and G, re-
spectively. D, denotes the dyadic downsampling opera-
tor, if € = 0, the operator Dy simply chooses every even
member of a sequence, and if ¢ = 1, the operator D,
simply chooses every odd member of a sequence; Z. is
the dyadic upsampling operator, if ¢ = 0, the operator
Zy inserts zeros at odd-indexed elements, and if ¢ = 1,
the operator Z; inserts zeros at even-indexed elements;
R, is reconstruction operator. This is called e-decimated
discrete wavelet transform (DWT).

Suppose the signal is given as[?4
Yi =f(ti)+ei7 (’L= ]-727"'7'”’) (5)

where t; = i/n, e; independently distributes as N (0, c?),
and f(-) is an unknown signal which we would like to
recover. We measure performance of an estimate f(-) in
terms of quadratic loss at thg sample points. In detail,
let f=(f(t:)), and f = (f(¢;))i=, denote the vectors
of true and estimated sample values, respectively. The
performance is measured by the risk of

R(f,f)=n"'B|f -1 (6)

which we would like to make it as small as possible. The
procedure of de-noising can be described as follows.

As to noisy signal y;, let co,x = y; denote initial signal
sequence, co is decomposed for several times accord-
ing to Eq. (2), approximation coefficient c;; and detail
coefficients dy i, da g, ---, djx are obtained. Approx-
imation coefficient ¢; is the main component of true
signal, and detail coefficient d;; contains main compo-
nent of noise and a few component of true signal wavelet
transforms around singular points.

Assume d; ;, = 0; x + 2; 5, where 8, ; is the component
of true signal wavelet transform and z;; is the compo-
nent of noise wavelet transform. Let chJG be the estimated
value of d; ,

2
b
2,n

s dig 1<5<35
dﬁk—{dj,k jo<ji<J+1 (7)
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where jo is low resolution truncation parameter, d;
can be obtained by thresholding detail d;, thresh-
old is selected as ov2Ilnn, ¢ and n are the mean
square and length of white noise, respectively. As to
white noise, its power is mainly concentrated in first
level detail coefficient, and the noise level decreases
with the increase of j, so the mean square white noise
can be estimated with the first level coefficient, o =
median(|ds x|)/0.6745. Hard thresholding or soft thresh-
olding could be selected to process d; . Hard threshold-
ing is

= | dig djx| > ov2lnn |

djk = { 0 i ®)

?

soft thresholding is
dip = { sgn(d;x)(|dj x| —ov2Inn) |djx| > 0ov2Inn
’ 0

J else

9)

The estimated signal f is reconstructed from approxi-
mation coefficient c; 5 and thresholded detail coefficients

d; , according to Eq. (4). This de-noising method with
the traditional orthogonal wavelet transform sometimes
exhibits visual artifacts, and Gibbs phenomena in the
neighborhood of discontinuities exhibit after de-noising
process.

The undecimated DWT has been independently dis-
covered several times, for different purposes and un-
der different names!”), e.g. shift/translation invariant
wavelet transform, stationary wavelet transform, or re-
dundant wavelet transform. The key point is that it is
redundant, and it gives a denser approximation provided
by the orthogonal DWT.

Suppose the coefficients of the orthogonal wavelet
filters H, G are h; and g;, respectively, and let Z be
the operator that alternates a given sequence with zeros,
thus, for all integers j, (Zz),, = z; and (Zz),,,, = 0.
Define filters H["] and GI"] to have weights Z"h and Z"g,
respectively, thus the filter H [ has weights h[;f]j = h;

and hg] = 0 if k is not a multiple of 2". The filter H["] is
obtained by inserting zeros between every adjacent pair
of elements of the filter H["~1, and similarly for GI"].
This can be visualized as shown in Fig. 1.

If fr is an initial discrete signal sequence, let ap = fx,
HOl = g, GI° = @, signal stationary wavelet transform
is

aj+1 = H[j]aj
{ bjt1 = GUla; (10)

where a;41 is the approximation coefficient of station-
ary wavelet transform and b;;; is the detail. Let
a;(e1,--- ,€;) or bj(e1,- - ,€;) denote an approximation
or a detail coefficient at level j obtained for e-decimated
DWT and characterized by € = [e1, - - -, ;]

It Ej4+1 = 0,

R (aj41,b541) = H'aja (61, ,5,6541)

+G*bj+1(€1,"' ,5j15j+1)7 (11)

if€j+1 =1,
R (a441,b541) = Hajia (61, 5,6541)
+G*bjy1(e1, " 1€5,€541)- (12)

The inverse stationary wavelet transform is

aj(er,- -+, &5) = RBJ](GJ’H’ bjt1)

5l
+R (a1, b)) (13)
In Raman spectrum signal de-noising process, we em-

ploy thresholding in stationary wavelet transform domain
instead of orthogonal wavelet transform domain. This
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Fig. 1. Filter coefficients upsample processing.
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Fig. 2. Experimental results. (a) The Raman spectrum sig-
nal of an Ag-MgF, nanoparticle cermet film with amorphous
MgF2 matrix and embedded fcc-Ag nanoparticles; (b) the de-
noising result by using the de-noising method in Ref. [3]; (c)
the de-noising result by stationary wavelet transform.
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method can suppress the Gibbs phenomena in de-noising
process.

Figure 2(a) is the Raman spectrum signal of an Ag-
MgFs nanoparticle cermet film with amorphous MgF,
matrix and embedded fcc-Ag nanoparticles!®. Figure
2(b) shows the result by using the de-noising method
in Ref. [3]. The result shows that in de-noising with or-
thogonal wavelet transform, the peak around 2320 cm™!
vanishes, and Gibbs oscillation appeares around the peak
bottoms, such as the positions around 535 and 3080
cm™!, especially the peak bottom around 3080 cm™! is
distorted seriously. It is found that Haar wavelet is the
best choice in our noise removing experiment with sta-
tionary wavelet transform. Figure 2(c) shows the result
by stationary Haar wavelet transform. Compared with
Fig. 2(b), the peak around 2320 cm™! in Fig. 2(c) ap-
peares clearly and Gibbs oscillations such as that around
position 3080 cm™! vanishes.

The proposed technique performs noise removal from
the Raman spectrum signal by using normalization of
stationary wavelet transform coefficients to make it in-
dependent to background intensity, as well as the sim-
ple and programmable shrinkage of coefficient by a fixed
threshold. The method of noise reduction is fully adap-
tive, in the sense that it is adaptive to local features by
thresholding and to the noise level which varies with both
reflectivity level and scale.
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